Gold mining from alluvium ores was once achieved by techniques associated with placer mining such as simple gold panning and sluicing, resulting in direct recovery of small gold nuggets and flakes. Placer mining techniques since the mid to late 20th century have generally only been the practice of artisan miners. Hydraulic mining was used widely in the Californian gold rush, and involved breaking down alluvial deposits with high-pressure jets of water. Hard rock ores have formed the basis of the majority of commercial gold recovery operations since the middle of the 20th century where open pit and or sub-surface mining techniques are used.
Once the ore is mined it can be treated as a whole ore using a dump leaching or heap leaching processes. This is typical of low-grade, oxide deposits. Normally, the ore is crushed and agglomerated prior to heap leaching. High grade ores and ores resistant to cyanide leaching at coarse particle sizes, require further processing in order to recover the gold values. The processing techniques can include grinding, concentration, roasting, and pressure oxidation prior to cyanidation.
Removing the gold-bearing rock from the ground is just the first step. To isolate pure gold, mining companies use a complex extraction process. The first step in this process is breaking down large chunks of rock into smaller pieces. At a mill, large machines known as crushers reduce the ore to pieces no larger than road gravel. The gravel-like material then enters rotating drums filled with steel balls. In these drums, the ore is ground to a fine slurry or powder.
Next, mill operators thicken the slurry with water to form pulp and run the pulp through a series of leaching tanks. Leaching dissolves the gold out of the ore using a chemical solvent. The most common solvent is cyanide, which must be combined with oxygen in a process known as carbon-in-pulp. As the cyanide and oxygen react chemically, gold in the pulp dissolves. When workers introduce small carbon grains to the tank, the gold adheres to the carbon. Filtering the pulp through screens separates the gold-bearing carbon.
The carbon moves to a stripping vessel where a hot caustic solution separates the gold from the carbon. Another set of screens filters out the carbon grains, which can be recycled for future processing. Finally, the gold-bearing solution is ready for electrowinning, which recovers the gold from the leaching chemicals. In electrowinning, operators pour the gold-bearing solution into a special container known as a cell. Positive and negative terminals in the cell deliver a strong electric current to the solution. This causes gold to collect on the negative terminals.
Smelting, which results in nearly pure gold, involves melting the negative terminals in a furnace at about 2,100 degrees F (1,149 degrees C). When workers add a chemical mixture known as flux to the molten material, the gold separates from the metal used to make the terminals. Workers pour off the flux and then the gold. Molds are used to transform the liquid gold into solid bars called doré bars. These low-purity bars are then sent to refineries all over the world for further processing.
WORLD GOLD PRODUCTION
Major gold-producing countries include South Africa, the United States, Australia, Mexico, Peru, Canada, China, India and Russia. South Africa is the leading gold-producing country, followed by the United States and Australia. In the United States, Nevada is the leading gold producer.
No comments:
Post a Comment